I run my bog 24/7 I want those little suckers to be as healthy as possible.
just from the net:
Nitrifying bacteria are chemoautotrophic bacteria that grow at the expense of inorganic nitrogen compounds. Many species of nitrifying bacteria have complex internal membrane systems that are the location for key enzymes in nitrification: ammonia monooxygenase which oxidizes ammonia to hydroxylamine, and nitrite oxidoreductase, which oxidizes nitrite to nitrate.
Nitrification in nature is the result of actions of two groups of organisms, the nitrosifyers (ammonia-oxidizing bacteria) and nitrifying bacteria (nitrite-oxidizing, nitrate producing bacteria)
Nitrosifying bacteria
1. NH3 + O2 + 2e- + 2H+ → NH2OH + H2O
2. NH2OH + H2O + 1/2 O2 → NO2- +2 H2O + H+
Nitrifying bacteria
NO2- + 1/2 O2 → NO3-
Nitrifying bacteria are classified as obligate chemolithotrophs. This simply means that they must use inorganic salts as an energy source and generally cannot utilize organic materials. They must oxidize ammonia and nitrites for their energy needs and fix inorganic carbon dioxide (CO2) to fulfill their carbon requirements. They are largely non-motile and must colonize a surface (gravel, sand, synthetic biomedia, etc.) for optimum growth. They secrete a sticky slime matrix which they use to attach themselves.
Species of Nitrosomonas and Nitrobacter are gram negative, mostly rod-shaped, microbes ranging between 0.6-4.0 microns in length.
They are obligate aerobes and cannot multiply or convert ammonia or nitrites in the absence of oxygen.
Nitrifying bacteria have long generation times due to the low energy yield from their oxidation reactions. Since little energy is produced from these reactions they have evolved to become extremely efficient at converting ammonia and nitrite. Scientific studies have shown that Nitrosomonas bacterium are so efficient that a single cell can convert ammonia at a rate that would require up to one million heterotrophs to accomplish. Most of their energy production (80%) is devoted to fixing CO2 via the Calvin cycle and little energy remains for growth and reproduction. As a consequence, they have a very slow reproductive rate.
Nitrifying bacteria reproduce by binary division. Under optimal conditions, Nitrosomonas may double every 7 hours and Nitrobacter every 13 hours. More realistically, they will double every 15-20 hours. This is an extremely long time considering that heterotrophic bacteria can double in as short a time as 20 minutes. In the time that it takes a single Nitrosomonas cell to double in population, a single E. Coli bacterium would have produced a population exceeding 35 trillion cells.
None of the Nitrobacteraceaeare able to form spores. They have a complex cytomembrane (cell wall) that is surrounded by a slime matrix. All species have limited tolerance ranges and are individually sensitive to pH, dissolved oxygen levels, salt, temperature, and inhibitory chemicals.
Unlike species of heterotrophic bacteria, they cannot survive any drying process without killing the organism. In water, they can survive short periods of adverse conditions by utilizing stored materials within the cell. When these materials are depleted, the bacteria die.
Maximum nitrification rates will exist if dissolved oxygen (DO) levels exceed 80% saturation. Nitrification will not occur if DO concentrations drop to 2.0 mg/l (ppm) or less. Nitrobacter is more strongly affected by low DO than NITROSOMONAS.